tolong bantu di jawab! memakai cara !!
Jawab:
vektor
perkalian titik
sudut vektor
u = 1, √2, a
|u| = √(1² + (√2)² + (a)²)
|u| = √ (1+ 2+ a²)
|u| = √(3 + a²)
v = 1 ,- √2, a
|v|= (1² + (-√2)² + (a)²)
|v| = √ (1+ 2+ a²)
|v| = √(3 + a²)
|u|.|v| = 3+ a²
u.v = 1(1) + √2(-√2) + a(a)
u.v = 1 -2 +a²
u.v = - 1 + a²
[tex]\sf cos (u ,v) = \dfrac{u.v}{|u|. |v|}[/tex]
[tex]\sf cos (\frac{\pi}{3}) = \dfrac{-1+ a^2}{3+a^2}[/tex]
[tex]\sf\dfrac{1}{2}= \dfrac{-1+a^2}{3+a^2}[/tex]
2(-1 + a²)= 1 (3 + a²)
-2 + 2a² = 3 + a²
2a² - a² = 3 + 2
a² = 5
a = ±√5